專題演講
|
楊永斌特聘教授 Yeong-Bin Yang Distinguished Professor 講題:My career of research in computational mechanics 國立台灣大學土木工程學系 Department of Civil Engineering, National Taiwan University Email: ybyang@ntu.edu.tw ABSTRACT: 這個報告主要分兩大段,前段報告我1990年代中期以前,在結構非線性理論與分析方面的進展,先前是從薄壁梁開始,建立14個自由度的有限元,具體的成果是提出剛體運動法則,建立求解非線性問題的廣義位移控制法,並以剛體法則建立多個非線性有限元素,及內力計算方法,目前已有更好的方法,可以模擬鋼結構角型接頭的翹曲問題。第二段則是報告1990代中期以後,我在橋梁結構振動方面的研究,原本是從修正AASHTO的衝擊公式開始,接著引進了車橋互制有限元素,建立了高鐵橋梁最佳設計準則,再接著發展出橋梁的車輛掃描法(VSM),以移動車輛獲取橋梁的模態特性,包括振頻、阻尼、振型和損傷等,此法獲得國際學界的熱烈響應,現在世界多國都有學者在進行延伸性的研究。 Keywords: 結構非線性分析、剛體運動法則、車橋互制理論、橋梁的車輛掃描法、高速列車振動、2.5D三維土壤波動分析法。 Research Interests:
Honors & Awards: 歷任台大土木系教授、主任、工學院院長、國立雲林科技大學校長、台大終身特聘教授、國家地震工程研究中心地震模擬實驗組組長、國科會土木學門召集人、新加坡國立大學土木系訪問教授、香港城市大學建築系講座教授,香港理工大學傑出講座教授等。曾任國內外學會/組織的理事長/主席,包括:中華民國結構工程學會、中國土木水利工程學會。中華民國力學學會、中華工程教育學會(IEET)、亞太計算力學學會(APACM)、和東亞太結構工程與營建會議(EASEC)等。 |
![]() |
|
張耀文特聘教授 Yao-Wen Chang Distinguished Professor 講題:Physical Design for Heterogeneous Integration: Challenges, Solutions, and Opportunities 簡報下載 國立台灣大學電機工程學系 Department of Electrical Engineering, National Taiwan University ABSTRACT: Achieving power, performance, and area (PPA) targets in modern semiconductor design increasingly relies on More-than-Moore heterogeneous integration, as the economic benefits of More-Moore on-chip scaling continue to diminish. The escalating costs of advanced technologies, driven by EUV lithography, mask sets, fabrication, design, and EDA tools, further reinforce this shift. Heterogeneous integration combines separately manufactured components into higher-level assemblies, such as CoWoS or multiple packages on a PCB, to deliver enhanced functionality and improved operating characteristics. Unlike conventional on-chip designs with relatively uniform components and interconnects, the physical design of heterogeneous systems must accommodate irregular component and board geometries, varying metal line widths, and diverse spacing rules among components, wires, and pads. Moreover, it must address cross-domain effects spanning system-level, physical, electrical, mechanical, thermal, and optical considerations, challenges not well captured by traditional chip design flows. In this talk, we introduce mainstream heterogeneous integration technologies and design options, discuss their layout modeling and associated physical design challenges, review key published solutions, and highlight promising directions for future research in heterogeneous physical design. Keywords: Power, Performance, and Area (PPA); More-Moore; More-than-Moore; Heterogeneous Integration; Physical Design; Layout; Electrical, Mechanical, Thermal, and Optical Effects; EDA Research Interests:
Honors & Awards: 張教授的主要研究領域為電子設計自動化(Electronic Design Automation,EDA)和最佳化。其研究成果深刻改變EDA樣貌,成為業界設計工具和教科書內容,分別於2013和2020年榮膺IEEE與ACM Fellow (國內僅有六位),2013年被電資領域主流媒體EE Times譽為「a microelectronics pioneer in EDA」,2015年團隊被譽為「The Best and Brightest Worldwide」。多年國際社群服務,協助臺灣領航EDA發展,於2020/2021年擔任EDA最重要國際組織IEEE CEDA首位非歐美的總裁,也是亞洲唯一擔任過兩個頂尖國際會議ICCAD和ISPD主席的學者,大幅提升臺灣的影響力。合著有專書兩本 (Morgan Kaufmann 出版的934頁EDA教科書等)、18個美國專利和超過380篇的ACM/IEEE期刊和會議論文。他發表全球最多的頂尖 DAC + ICCAD + TCAD 論文(263篇),包含全球最多的101篇DAC和次多的81篇ICCAD論文,包含多篇影響深遠的論文(例如,B*-tree/TCG floorplan representations, weighted-average (WA) wirelength length model, NTUplace circuit placers, package/PCB routing等等)。其近五年的論文引用數曾名列微軟學術搜尋資料庫(Microsoft Academic Search Database)硬體和結構(Hardware & Architecture)領域,全球四萬名研究者的第一名。研究和教學獲獎無數,包含全球最多的24項ACM/IEEE EDA 競賽前三名(8次冠軍)、12項最佳論文獎(DAC’17等,62年來臺灣唯一全領域第一名論文)、兩次臺灣大學傑出教學獎(前1%教師,共10年)和九次優良教學獎(前9%教師,合計19年教學獎)、國科會傑出特約研究員和三次傑出研究獎、教育部學術獎、中國電機工程學會電機工程獎章(最高榮譽)、有庠科技講座、潘文淵文教基金會傑出研究獎、東元獎、IBM Faculty Award (三次)等。 張教授為現任 IEEE CEDA 的IEEE Fellow Search Committee 主席,曾任其總裁(2020/2021)、候任總裁(2018/2019)、技術活動副總裁(2014/2015)和會議副總裁(2016/2017),他也曾任 IEEE 總會IEEE Robert N. Noyce Medal (有半導體諾貝爾獎之稱) 選拔委員、Ad Hoc Committee和IEEE Smart Cities 指導委員 (Steering Committee)。張教授曾為頂尖會議 IEEE/ACM ICCAD (台灣唯一)和ACM ISPD (亞洲首位)議程委員會/會議/指導委員會主席和台灣首位頂尖期刊IEEE TCAD 副編輯 (2008-2013);由於其傑出和創新的貢獻 (例如,首創ISPD的Lifetime Achievement Award和其相關系列活動),獲頒2015 IEEE CEDA Outstanding Service Award和2012 ACM Service Award。 張教授和業界互動密切,現任聯發科技獨立董事,曾任創惟科技獨立董事、聯發科技、瑞昱半導體和智原科技技術顧問,合作企業超過20家。2015年合創至達科技(Maxeda Technology),於2023年為國際EDA第一大廠新思科技 (Synopsys) 收購;2008年其NTUplace3晶片擺置器和Multilevel Router成為思源科技的Custom Digital Placer和Router,對該公司於2012年以約122億台幣售予新思科技,有關鍵性的貢獻。其在1999年起擔任教育部教改計畫EDA競賽主席和EDA聯盟召集人,創辦各項影響深遠的EDA競賽(現為全球參賽隊伍最多的CAD Contest at ICCAD)和學術推廣活動,領導台灣團隊在國際舞台上發光發熱,大幅提升台灣在EDA領域的國際影響力和知名度,深獲國際社群的讚賞。由於其對學術社群的貢獻,IEEE CEDA 旗艦雜誌 IEEE Design & Test 於2025年五月出版對張教授的專訪,為台灣的唯一。 |
![]() |
Semi-plenary
| 周逸儒教授Yi-Ju Chou Professor
講題:From equations to emulators: Recent advances in accelerating fluid dynamics prediction with data-driven methods 國立臺灣大學應用力學研究所 ABSTRACT: Recent advances in data-driven techniques have driven a surge in the development of data-driven methods for predicting fluid dynamics. Unlike traditional computational fluid dynamics (CFD), which numerically solves partial differential equations governing flow behavior, data-driven approaches aim to accelerate flow prediction using modern statistical and AI techniques, resulting in surrogate or emulation models. These surrogate models generally fall into three categories: data-fitting, multi-fidelity, and projection-based methods. While data-fitting methods focus on point-to-point predictions, this talk will highlight our recent work in the second and third categories. In the multi-fidelity category, I will present two models: a multiscale modeling framework for granular flows using active learning, and a tensor-based neural network for turbulent flow modeling. The former leverages Gaussian Processes to connect microscale and macroscale simulations, while the latter improves the accuracy of low-fidelity turbulence models using neural networks. In the projection-based category, we introduce a flow emulator for predicting the spatiotemporal evolution of turbulent wakes behind blunt bodies. This model combines spectral proper orthogonal decomposition with kriging techniques. Following this overview of our recent progress, I will discuss key challenges and future directions in the development of data-driven flow prediction models. Research Interests:
Honors & Awards:
|
![]() |
| 劉立偉副教授Li-Wei Liu Associate Professor
講題:Computational plasticity for bio-inspired structural materials 國立臺灣大學土木工程學系 ABSTRACT: Bio-inspired structural (BIS) materials are synthetic composites designed by imitating the microstructural features of biological materials, offering attractive properties and significantly better performance than their constituents. Among BIS materials, the cellular material is one kind of man-made material with the cellular microstructure. It is inspired by many natural materials such as wood, cork, and bone, which is renowned for its stiff yet lightweight characteristics. To explore the mechanical behavior of the cellular materials, many investigations have been conducted, and these strengthen the performance of the cellular material. In this study, we investigate the plastic behavior of 2D cellular materials and especially focus on the yield surface evolution of 2D cellular materials. The finite element simulation of cellular materials with different microstructures is adopted, and the representation block approach is selected to study the initial and subsequent yield surfaces of cellular materials. To establish the proper finite element model of cellular materials, the size effect analysis and the boundary effect analysis are conducted, and the yield point determination is proposed. For the detection of initial and subsequent yield surfaces, the probing path and the preloading path are designed. In addition, in order to study their plastic behavior accurately, we propose an elastoplastic constitutive model that incorporates anisotropy, tension-compression asymmetry in yielding, and nonlinear anisotropic hardening, along with its associated plastic integration scheme. The integration, called return-free integration, is based on the internal symmetries of the model, which relies on Lie algebra and Lie group theory, and efficiently solves the nonlinear coupled ODEs for stress while automatically satisfying the yield condition. The proposed model and integration method have been successfully implemented in the user material subroutine (UMAT) of the finite element software ABAQUS. Using this finite element framework, we conduct the simulation to detect the yield point of cellular materials under different loadings and then to investigate their yield surface evolution. Furthermore, the same methodology has been applied to the investigation of the yield surface evolution of cellular composites. The influence of the microstructures on the yield surface evolution of both cellular materials and cellular composites is carefully explored in this study. Keywords: Plasticity, Return-free integration, Bio-inspired structural materials, Cellular composites, Yield surface evolution. Research Interests:
Honors & Awards: Dr. Li-Wei Liu is an Associate Professor in Department of Civil Engineering, National Taiwan University. He received his Ph.D. degree in Department of Civil Engineering, National Taiwan University in 2009. From 2009 to 2014, he worked as a Post-Doctoral Fellow; and from 2014 to 2018, he was an Assistant Research Scholar with National Taiwan University. He was also a Research Fellow with Institute of Thermomechanics, Czech Academy of Sciences from 2017 to 2018. After that he moved back to Taiwan and became an Assistant Professor in Department of Engineering Science, National Cheng Kung University from 2018 to 2022 and an Assistant Professor with National Taiwan University from 2022 to 2025. He has expertise in “theoretical, computational, and experimental plasticity;” “theoretical and computational study of constrained systems;” and “applications of hypercomplex (Clifford) analysis in anisotropic-coupled mechanics.” Now he focuses on “experimental, theoretical, and computational study in multiscale plasticity;” “coupled mechanics of anisotropic and isotropic materials;” “mechanics of soft biological tissue;” and “mechanics of bio-inspired structural materials.” |
![]() |
|
吳清森教授Ching-Sen Wu Professor 講題:Scale-resolved Simulations of Gravity Currents Transport Processes: Insights from Turbulent Eddies to Engineering Solutions 國立宜蘭大學土木工程學系 ABSTRACT: The prediction of suspended sediment motion in fluvial systems serves as a key technology for understanding the gradual sediment transport and deposition processes. Gravity currents, as flow phenomena driven by density differences, constitute the core turbulent transport mechanisms controlling suspended sediment dynamics in riverine environments. In this talk, we employ scale-resolved simulations based on high-resolution large eddy simulation (LES) that bridge fundamental turbulent eddy dynamics analysis with practical engineering applications. Unlike commonly used depth-resolving models in engineering applications, our approach captures three-dimensional turbulent characteristics that these models cannot easily resolve. The research addresses specific engineering challenges in reservoir desilting during non-typhoon periods. During these periods, gravity currents not discharged through desilting conduits become susceptible to energy dissipation before probabilistic settling due to topographical constraints. Through high-fidelity numerical modeling, this study analyzes the interaction mechanisms between gravity current turbulent structures and underwater obstructions, quantifying their effects on momentum flux characteristics and sediment-carrying capacity. Based on both qualitative and quantitative analysis, we develop underwater structure configurations that more effectively enhance reservoir desilting efficiency. Overall, this research captures multi-scale turbulent characteristics, from high-energy large-scale eddies that dominate momentum transport to small-scale dissipative motions, controlling suspended sediment transport processes. By analyzing the small-scale evolved vortical structures in simulations, we propose an alternative engineering solution, providing practical strategies for water resource management in reservoir. Keywords: Gravity currents, Large eddy simulations, Turbulent transport process Research Interests:
Honors & Awards 吳清森教授於2012年取得國立臺灣大學土木工程學系博士學位。2012至2016年間,先後擔任臺灣大學土木工程學系及工程科學及海洋工程學系博士後研究員,並於2014年赴斯洛伐克科學院擔任訪問學者。2017年起任職於國立宜蘭大學土木工程學系,歷經助理教授(2017)、副教授(2020)及教授(2025)。任職期間,曾兼任校內育成中心主任、研發處產學推廣組組長及研發處計畫管理組組長等行政職務。在教學表現方面,吳教授榮獲校內教學傑出獎兩次(2019、2020年),並年年獲得校內專題研究競賽及學生社群指導獎項(2018-2024年)。研究領域專精於計算流體動力學,長年致力於開發計算流體動力模式,探討水利工程領域中的異重流現象。研究成果豐碩,多數論文發表於流體力學領域頂尖期刊,包括Journal of Fluid Mechanics、Physics of Fluids、Journal of Hydraulic Research等。學術表現方面,曾榮獲國科會優秀年輕學者研究計畫獎勵兩次(2022-2024年、2024-2027年)及科技部大專學生研究計畫創作獎(2022年)。在人才培育方面,吳教授指導學生表現優異,多次於國內重要學術會議中獲論文獎,包括全國力學會議(2018、2020、2024年)、全國計算流體力學會議(2019、2023年)、水利工程研討會(2021年)等。 |
![]() |
| 蔡佳霖教授Jia-Lin Tsai Professor
講題:Compressive Behaviors of Fiber Composites and Composite Sandwich Structure 國立陽明交通大學機械工程學系 Research Interests:
Honors & Awards:
|
![]() |





